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ABSTRACT

Motivation: The Majority Vote approach has demonstrated that

protein–protein interactions can be used to predict the structure or

function of a protein. In this article we propose a novel method for

the prediction of such protein characteristics based on frequencies

of pairwise interactions. In addition, we study a second new

approach using the pattern frequencies of triplets of proteins, thus

for the first time taking network structure explicitly into account. Both

these methods are extended to jointly consider multiple organisms

and multiple characteristics.

Results: Compared to the standard non-network-based method,

namely the Majority Vote method, in large networks our predictions

tend to be more accurate. For structure prediction, the Frequency-

based method reaches up to 71% accuracy, and the Triplet-based

method reaches up to 72% accuracy, whereas for function

prediction, both the Triplet-based method and the Frequency-

based method reach up to 90% accuracy. Function prediction on

proteins without homologues showed slightly less but comparable

accuracies. Including partially annotated proteins substantially

increases the number of proteins for which our methods predict

their characteristics with reasonable accuracy. We find that the

enhanced Triplet-based method does not currently yield significantly

better results than the enhanced Frequency-based method, sug-

gesting that triplets of interactions do not contain substantially more

information about protein characteristics than interaction pairs. Our

methods offer two main improvements over current approaches—

first, multiple protein characteristics are considered simultaneously,

and second, data is integrated from multiple species. In addition, the

Triplet-based method includes network structure more explicitly than

the Majority Vote and the Frequency-based method.

Availability: The program is available upon request.

Contact: pchen@stats.ox.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The biological function of a protein within the cell is governed

by its protein–protein interactions. While these interactions

have recently become widely available for many organisms

(e.g. Gavin et al., 2002; Uetz et al., 2000), they are not yet fully

explored with regards to the insights into protein characteristics

they might provide.
We now have (just about) enough information to see each

protein not only in the context of its immediate neighbours, but

also in the overall context of the whole protein–protein

interaction network. Moreover, these data-sets allow the

examination of multiple species data, its similarities and its

differences (Sharan et al., 2005), so we can start tackling the

question whether data from multiple species improves our

ability to predict protein characteristics.

A protein interaction network (interactome) is conceptualized

as a non-directional graph; proteins are nodes, and interactions

between proteins are edges, see, e.g. (Barabasi and Oltvai, 2004;

Liu et al., 2005). The distances in the network, therefore, refer

to graph distance rather than to physical distance, thus

focussing on topological properties. In this article, we predict

protein function and structure by using not only pairwise

protein–protein interactions, but also by explicitly including

network structure. We shall see that, beyond pairwise interac-

tions, additional network information does not significantly

improve our ability to predict protein characteristics.
Biologically, such lack of improvement is a surprise, and may

be due to poor data quality. Protein characteristics, such as

function, structure and subcellular location, all affect and are

affected by the protein interaction network (Aloy and Russell,

2003; Chou, 2000; Spirin and Mirny, 2003). For instance,

functional proteins have been shown to group within the

network (Spirin and Mirny, 2003). This effect is expected—

proteins will act together to achieve a complex biochemical

function, so often neighbours within the network will share

common biochemical functions, although not identical chemi-

cal functions. In contrast, for protein 3D structures we do not

expect clumping of identical structures within the network;

instead we would expect patterns of preferred structural

partners (Aloy et al., 2004). As protein interactions are specific,

the 3D structure of the proteins involved should also be

specific.

These patterns of interactions for both structure and function

have led to the development of prediction algorithms based on

the position of a protein within the interaction network

(Nabieva et al., 2005; Schwikowski et al., 2000). In functional

prediction, the most popular approach is to observe the

functional characteristics which the nearest neighbours of the

target protein possess, and to select the function which occurs*To whom correspondence should be addressed.
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most frequently. This simple method, called the Majority Vote
approach (Schwikowski et al., 2000), is one of the most
accurate ways of predicting protein function to date. It reached

72% accuracy in predicting 42 functional categories in the top
three predictions for yeast. We demonstrate that taking
pairwise interactions or triplets of interactions into account

can improve on this popular method.
For both structure and function prediction, methods based

on interaction networks have so far had limited success (Aloy

et al., 2004); far more useful techniques use homology of a
target sequence to an already solved protein (Zhang and
Skolnick, 2005). However, a large number of proteins do not

have known homologues (Burley et al., 1999; Iliopoulos et al.,
2001), and these are the target proteins where our methods
based on the interactome could provide considerable progress.

Both our methods rely on an upcast set of categories.
A protein x is annotated with a set of categories S(x); these
categories could relate for example to structure, to function or

to subcellular location. The protein–protein interaction net-
work provides a set B(x) of proteins interacting with protein x.
The characteristics of these interacting partners, together with

the characteristics of x, give an upcast set of triples.
For the Frequency-based method, we give a category score

based on the counts of relative frequencies of pairwise

category–category interactions, and we predict the category
with the highest score, which is the most common category in
interaction pairs that the protein x is involved in. The method

differs from the Majority Vote in that relative frequencies of all
category pairs are taken into account.
The Triple method and its variants use the lines and triangles

of the category interactions in the prediction of protein

characteristics. Heuristically, for a protein x we look at all
the triples that x is involved in. We then translate these triples
into category triples. In the network, the frequencies of

different category triples differ considerably. We predict,
for x, the category which is ‘most common’ in the type of
triples that x is involved with.

In addition, protein characteristics, such as structure,
function and subcellular location are far from independent.
We make use of this dependence to improve our predictions by

overlaying many characteristics onto the pairs and triples, then
use this mixture of information to predict a single character-
istic. For instance, the patterns of proteins with a particular

structure and subcellular location can be employed to aid
prediction of functional category.
Both the Frequency-based method and the Triple method are

extended to include additional information on neighbouring
protein characteristics, an approach which is not feasible for the
Majority Vote method. This inclusion of multiple protein

characteristics shows a marked improvement over simpler
methods. In the case of function prediction, the use of
additional information can improve the accuracy from 61 to

71%. When partially annotated proteins are included to
provide more information, the number of prediction is
increased. In the case of the Enhanced Frequency-based

method by 143 and 63% for structure and function prediction,
respectively.
The methods utility is shown in that for function prediction

on proteins without homologues (that are therefore not

predictable by sequence based approaches) accuracy
reaches 89%.
Finally, the inclusion of multiple species data does not

dramatically improve the results. It appears that while

eukaryotic networks have some predictive power for
other eukaryotes, and similarly prokaryotic networks
have some predictive power for other prokaryotes, the

inclusion of eukaryotic data does not improve prediction for
prokaryotic proteins and vice versa. Therefore eukaryotic and
prokaryotic protein interaction networks should be treated

separately. In particular, this study leads us to propose
that there may be some fundamental differences between
networks from different kingdoms, whereas networks from

the same kingdom display enough similarity to possess some
predictive power.
Summarizing, our method offers two main improvements

over current approaches—first, multiple protein characteristics
are considered simultaneously, and second, data is integrated
from multiple species. The results suggest three conclusions:
first, that a model for protein–protein interaction networks

which is based on pairwise interactions might be suitable.
Second, that structure includes information on function, and
vice versa; but location may be surplus to requirements when

both function and structure information are included. Third,
protein–protein interaction networks from different kingdoms
are substantially different.

2 MATERIALS AND METHODS

A protein–protein interaction network can be represented as a graph

in which proteins are nodes, and two nodes are linked by an

(undirected) edge if the corresponding proteins interact. We assume

that the network is known and that function and structure are

known for all but one protein. The task is to predict function and/or

structure for that unknown protein. Our approach is to take the

local network structure around the target protein into account.

For that purpose, the network structure is modelled as dependent

subnets. We construct an auxiliary set of dependent subnets based

on the categories which the proteins possess. Due to the lack of

annotation for many of the proteins only simple network structures,

namely pairs, triples, lines and triangles of three nodes are taken into

account.

A triple is a subnet formed by a centre node and two of its

neighbours. A triangle is a triple where all three nodes are connected to

each other by an edge. A line, by contrast, is a triple in which the two

flanking nodes are not connected by an edge.

Rather than only working with data from the organism under study,

we enhance our models by using pattern frequencies obtained from

pooled interactions in other organisms, an extension which is not

feasible for the Majority Vote method. We establish three prior data

bases pooling protein–protein interactions collected from, prokaryotes,

eukaryotes and both kingdoms. The frequencies of pairs, triples, lines

and triangles are counted in these three prior data bases and are

employed to predict protein structure and function for the target

protein.

In addition to the integration of protein interactions, multiple protein

characteristics are considered simultaneously. For the prediction of one

protein characteristic, we treat the three cases that one, two or three

characteristics, namely structure, function and location, are available

for the proteins in our model.

The details of the statistical approach are below. Performance in all

cases is evaluated using a leave-one-out cross-validation.
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2.1 Protein-protein interaction networks

Experimental protein–protein interactions, excluding self interactions,

were obtained from DIP. Self interactions (<3% of all interactions) are

not included in this article so that all triples are constructed of three

different proteins. Our method is applied to Drosophila melanogaster,

Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus,

Homo sapiens and Escherichia coli. We have also used Halicobacter

pylori data when exploring the use of expanding prior datasets, but not

for method comparison due to the small sample size. In total, the

dataset contains 18 772 proteins with 52 568 interactions.

2.2 Classifications of structure, function

and subcellular location

We classify the proteins in our dataset into SCOP classes (Murzin et al.,

1995) using the SUPERFAMILY databases (Gough and Chothia,

2002). Between 61 and 89% of proteins are classified. Proteins are

classified into 7 distinct classes at the top level of the SCOP hierarchy;

see Supplementary Material Table A1. In our analysis, a protein is on

average found to be assigned to 1.3 classes.

The protein function categorization we use is based on the

24 functional groups from the second level of molecular function in

the Gene Ontology (Ashburner et al., 2000) (see Supplementary

Material Table A2). Molecular function ontology in GO has 188

secondary level categories, excluding the categories ‘obsolete’ and

‘unknown’. The 24 groups are those that are most frequently observed.

An annotated protein is assigned several nodes in GO, which can be

traced back to one or multiple nodes (groups). In our analysis, a protein

is on average assigned to 1.2 functional groups. The annotation of

13 subcellular locations from MIPS (Mewes et al., 2002) for yeast is

used in our dataset (see Supplementary Material Table A3).

2.3 The upcast set of category–category interactions

From the protein–protein interaction network, we build an upcast set of

category–category interactions. A category–category interaction is

constructed by two characteristic categories from two interacting

proteins.

Consider a protein x, within the set of all characteristic categories S,

S(x) includes the categories that protein x is classified into. If two

proteins x and y interact, the category–category interaction is the edge

between two characteristic categories, a and b (a 2 SðxÞ, b 2 SðyÞ), from

each of two proteins (denoted by a � b). The upcast set of category–

category interactions is a collection of all category–category interac-

tions extracted from the protein–protein interaction network, which

may be from one or multiple organisms.

2.4 The Frequency-based method

First, we provide a Frequency-based method, see also Chen (2005), to

predict a protein characteristic using protein interactions.

The score for the query protein x with annotated neighbours B(x), to

be in a specific category a is proportional to the product C(a, x). This is

the product of the relative frequencies f of observing category a for all

category–category interactions of x’s neighbours in the prior data base;

Cða; xÞ ¼
Y

b 2 SðnÞ
n 2 BðxÞ

fða � bÞ; ð1Þ

where f ð a � bÞ is the relative frequency of category–category interac-

tion f a � bg among all category–category interactions.

We define our score Fða;SðxÞÞ by

Fða;SðxÞÞ :¼
Cða; xÞP
k2S Cðk;xÞ

:

This score is derived as an analogy of the likelihood of observing

category a in S(x) if all edges in the category interaction network

occurred independently. Heuristically, this score serves as a measure for

the chance of protein x having characteristic a.

The protein is then predicted to possess the characteristic category, or

categories, with the highest score. This Frequency-based method takes

account of both the categories observed in the neighbourhood and their

global distribution, while it does not explicitly consider network

structure beyond pairwise interactions.

2.5 The Enhanced Frequency-based method

The Frequency-based method can be extended to include two or more

protein characteristics in the prediction of a specific protein character-

istic. The Enhanced Frequency-based method is similar to the

Frequency-based method, only the category in a category–category

interaction is now a vector containing all characteristics of the protein.

In the case of two protein characteristics, S1 and S2, a characteristic

vector is a 2-vector with two characteristic categories from S1 and S2.

While S is now the set of all characteristic vectors, S(x) is the subset of S

of the characteristic vectors of protein x,

SðxÞ ¼ s1; s2½ �

��� s1 2 S1ðxÞ; s2 2 S2ðxÞ
n o

:

Given the characteristics of the neighbours, the product of the

frequencies of category–category interactions Cða; x;SiÞ for a protein

x to be in the characteristic category a of Si is defined, in a similar way

to (1), as

Cða; x;SiÞ ¼
Y

vb 2 SðnÞ
n 2 BðxÞ

fðva � vb; vai ¼ aÞ;

where va ¼ va1; va2½ �, vaj 2 SjðxÞ ðj 6¼ iÞ. We add 1 to the relative

frequency f ðva � vbÞ to avoid the case when va � vb exists in unobserved

interactions.

The enhanced method requires the target protein annotated with all

characteristics except one unknown characteristic and the neighbouring

proteins annotated with multiple characteristics. However, there are

many partially annotated proteins in the neighbourhood that may

provide useful information. These proteins are particularly important

when only a few fully annotated ones are available. In Supplementary

Material B1, an extended version of our enhanced method is provided

which includes partially annotated proteins in the scores.

2.6 The upcast set of triples of characteristic categories

Similar to the upcast set of category–category interactions, we extend

the concept of pairwise category–category interactions (as in Section

2.3) to triples of characteristic categories; see Figure 1 for example.

A triple is a specific pattern constructed by three categories with two

(a line) or three (a triangle) category interactions among them.

For an unannotated protein x and its interacting protein partners

u and v, where u and v may or may not interact, the combination

of their characteristic categories forms various patterns of triples,

fb � a � c j b 2 SðuÞ; a 2 SðxÞ; c 2 SðvÞg. We call such a triple

fb � a � cg with a 2 SðxÞ a triple around protein x. In order to estimate

how frequently a certain triple will occur for protein x and its

neighbours, we simply use the frequency of this triple in the upcast set

of protein–protein interactions.

2.7 The Triple method and the Line-Triangle method

We now take triples of proteins into account to derive a new score for a

protein x to be in a specific characteristic category a; this score is

proportional to the product t(a, x) of the relative frequencies f of

P.-Y.Chen et al.
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observing category a throughout all triples of x’s neighbours in the

prior data base;

tða; xÞ ¼
Y

u 6¼ v
u; v 2 BðxÞ

X

b 2 SðuÞ
c 2 SðvÞ

fðb � a � cÞ;

where fð b � a � cÞ is the relative frequency of triple f b � a � cg among

all triples.

It is possible that some triples are not observed in the prior data base.

This may be the case because either the triples do not occur in the real

network, or because they have not yet been observed in a study. We

therefore add 1 to all frequencies. The more different observed triples

the target protein occurs in, the more confident we can be in predicting

the characteristic. This confidence is reflected in the following weighting

scheme. For each potential characteristic category a in the query

protein x, the weight wða; xÞ is ðohÞ
h, where o(a,x) is the number of triples

around x, assuming x is in category a, observed in the prior data base.

Here hðxÞ ¼
P

u;v2BðxÞ jSðuÞjjSðvÞj is the number of all potential triples

around protein x. For example, in structure prediction, suppose that the

query protein x has only two neighbours u and v, and that u is in

category b and v in c and d. If x is in category a, then the two possible

triples fb � a � cg and fb � a � dg result in h¼ 2. With only the triple

fb � a � cg being observed in the prior data base, which gives o¼ 1, the

weight wða; xÞ is ð12Þ
2. A higher weight indicates more different triples,

implying greater confidence in constructing the probability score. We

define the weighted score Qða;SðxÞÞ by

Qða;SðxÞÞ :¼
tða;xÞ � wða; xÞP

k2S tðk; xÞ � wðk; xÞ½ �
: ð2Þ

We predict that protein x possesses characteristic a if a maximizes the

weighted score Qða;SðxÞÞ.
The Line-Triangle method is an easy extension of the triple method;

we separate triples into lines and triangles and use the respective counts.

Here, a triple fb � a � cg around protein x is called a line if b 6� c, and it

is called a triangle if b � c. If the query protein x is in a protein triangle

so that u 2 BðxÞ, v 2 BðxÞ and u 2 BðvÞ in the protein interaction

network, then all corresponding category triangles are counted. If the

query protein x is in a protein line so that u 2 BðxÞ, v 2 BðxÞ and

u 62 BðvÞ in the protein interaction network, then all corresponding

category lines in the upcast set are counted. The weights are adjusted

relating to these frequencies.

We could think of our score as a model of the type

Prða 2 SðxÞjX c
xÞ _ exp logwða; xÞ þ log tða; xÞ

� �
; ð3Þ

where X c
x is the network complimentary to node x and edges connecting

with it. Related models, called p? model, have been in use in social

network analysis, see Wasserman and Pattison (1996).

This model (5) assumes that the probability of a characteristic

category a is proportional to the log frequencies of the triples. Other

factors such as network diameters are not included in the model.

2.8 The Enhanced Triple method and the Enhanced Line-

Triangle method

Similar to the Enhanced Frequency-based method in previous

Section 2.5, the Enhanced Triple method is an extension of the triple

method to include multiple protein characteristics in the prediction of a

specific protein characteristic.

Given the characteristics of the neighbours, the product of triple

frequencies tða; x;SiÞ for a protein x to be in the characteristic category

a of Si is defined, similarly to (2), as

tða; x;SiÞ ¼
Y

u 6¼ v
u; v 2 BðxÞ

X

vb 2 SðuÞ
vc 2 SðvÞ

fðvb � va � vc; vai ¼ aÞ;

where va ¼ va1; va2½ �, vaj 2 SjðxÞ ðj 6¼ iÞ. The weighted score Qða;SiðxÞÞ in

the Enhanced Triple method is given by applying tða; x;SiÞ in (2).

Again, the Enhanced Line-Triangle method is an easy extension of

the Enhanced Triple method; we separate triples into lines and triangles

and use the respective counts. To include partially annotated proteins,

an extended version of the Enhanced Triple method and the Enhanced

Line-Triangle method is provided in Supplementary Material B2.

2.9 Combining the enhanced methods

Given the scores from the Enhanced Frequency-based method and

from the Enhanced Line-Triangle method, an obvious way forward is

to combine these scores. In particular the Line-Triangle score can be

used to correct for over-counting in the frequency-based score, in

the sense that in the frequency score a triangle would be translated

into three counts of pairwise interactions. If there is a strong

tendency for transitivity, i.e. for completing the triangle

fa � b � c � ag given that we see fa � b � cg, then the interaction

c � a is not very surprising, thus should be discounted for. As a

guidance for a potential linear relationship between the scores, the

coefficients in linear regression are estimated, see Supplementary

Material Table H1.

In addition we used a rank-sum approach to reconcile differing

predictions from the Enhanced Frequency-based method and from the

Enhanced Line-Triangle method, as well as taking the average score, see

Supplementary Material Table H2.

3 RESULTS

3.1 Comparison of methods

The DIP subsets from six organisms, D.melanogaster,
C.elegans, S.cerevisiae, M.musculus, H.sapiens and E.coli, are

analysed. A leave-one-out cross-validation is carried out as
follows. Each time a single protein is left out of the prior data
base and used as the test data, whereas the other proteins from

the same organism are the training data (the prior data base).
The frequencies of pairs, triples, lines and triangles are counted
in the training data. We then apply the respective weighted

probability score using the information from the protein
interaction partners of our target protein. Only those proteins
which interact with at least two proteins in the prior data base

are selected as target proteins.

A

B

D

A
B

A B

A B
D

B

D

B

D

Upcast set of triples of characteristic
categories

Protein interaction
network

A

A

C

C
AC

Fig. 1. Upcast set of triples of characteristic categories.

In this example, three single-category proteins and one two-category

protein in the protein interaction network result in an upcast set of five

triples (three lines and two triangles).
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Our methods are compared to Majority Vote (Schwikowski

et al., 2000), which takes interactions, but not network

structure, into account.

Tables 1 gives the number of proteins in interaction triples

for which both neighbouring proteins have structure as well as

function annotation, as required for the Enhanced Line-

Triangle method. This is this smallest common datasets that

we use for the comparison among different methods.

Tables 2 gives our results for both structure and function

prediction. The accuracy is calculated as the ratio between the

number of correctly predicted proteins and all predicted

proteins. For structure prediction the predicted protein

characteristic is the category with the highest probability

score. Functional prediction (see Tables 2) is measured

based on the highest three probability scores. To help judge
statistical significance for accuracies between network and
non-network-based methods, we use a normal approximation

and perform paired z-tests (Supplementary Material Table D1
for P-values). We note that the paired z-test assumes that the
predictions for different proteins are independent. While this

assumption is most likely not satisfied, we postulate that the
dependence is weak enough to still warrant a normal
approximation; yet the P–values have to be viewed as

approximate rather than as exact.
The results both for structure prediction and for function

prediction (see Table 2) show that in many organisms the

Enhanced Frequency-based method and the Enhanced Line-
Triangle method outperform Majority Vote; when they do not
outperform the Majority Vote, they gives comparable results.

The Enhanced Triple method and the Enhanced Line-Triangle
method do not, however, generally outperform the Enhanced
Frequency-based method.

The accuracies of function prediction on proteins without
homologues was also tested. Non-homologue proteins are
selected from Table 1 that meet the criteria for the Enhanced

Line-Triangle method (i.e. at least two neighbours and
have structure and function annotation). The non-homologue
proteins are those having no similar sequence (E-value<0.001)

within the same functional group among all DIP organisms.
These proteins are not predictable by sequence-based
approaches and are considered more difficult targets.

Although only a limited number of proteins are tested, the
accuracies from our methods are still comparable, see
Supplementary Material E.

Table 1 contains the clustering coefficient for the various
protein interaction networks. The clustering coefficient for a
protein is the ratio between the number of interacting protein

pairs in the neighbourhood and all protein pairs in the
neighbourhood. The average clustering coefficient for an
organism is defined as the average of all clustering coefficients

from all proteins with at least two neighbours; it provides
a measure of the density of interaction in a network, see,
e.g. Dorogovtsev and Mendes (2003). A network clustering

coefficient may be affected by the experimental methods used
to identify the interactions. For instance small scale
techniques concentrating on specific proteins such as those

used in the DIP subsets of M.musculus and H.sapiens give
rise to high clustering coefficients. In structure prediction,
we observe a trend of increasing accuracy with organisms

of higher clustering coefficients suggesting that the predic-
tion improves with clustering, see Supplementary Material
Figure D1.

When combining the enhanced methods we were surprised
not to find any marked improvements over the single methods.
Typically, when the Enhanced Frequency-based method pre-

dicted correctly, so does the Enhanced Line-Triangle method,
and vice versa. The results are given in Supplementary Material
Table H2. In contrast, there is a clear tendency for transitivity,

as displayed in Supplementary Material Table I1. While there
clearly is more information in the triples compared to the
triangles, we conjecture that the noise in the data is to date too

high to allow for making good use of the information in
the triples.

Table 1. Number of proteins with structure and function annotation

Organism (DIP) Annotated proteins Clustering coefficienta

D.melanogaster (D.M) 2195 0.03

C.elegans (C.E) 288 0.10

S.cerevisiae (S.C) 2160 0.19

M.musculus (M.M) 138 0.22

H.sapiens (H.S) 594 0.39

E.coli (E.C) 525 0.64

aThe clustering coefficients are calculated from proteins with at least two

annotated neighbours.

Table 2. The accuracies of structure and function prediction using

different methodsa

Organism

(DIP)

Predicted

proteins

M.V. F. E. F. T. L-T E. T. E. L-T

Structureb

D.M 1262 0.35 0.17 0.44 0.15 0.15 0.41 0.41

C.E 78 0.36 0.37 0.49 0.38 0.40 0.45 0.46

S.C 1608 0.39 0.31 0.54 0.33 0.31 0.52 0.50

E.C 150 0.57 0.70 0.71 0.41 0.35 0.65 0.61

M.M 32 0.72 0.50 0.69 0.69 0.69 0.72 0.72

H.S 273 0.44 0.47 0.71 0.47 0.43 0.71 0.70

Functionc

D.M 1275 0.53 0.67 0.69 0.67 0.67 0.65 0.65

C.E 85 0.38 0.55 0.71 0.60 0.60 0.64 0.66

S.C 1618 0.67 0.61 0.67 0.67 0.67 0.68 0.69

E.C 154 0.69 0.69 0.70 0.69 0.69 0.68 0.66

M.M 32 0.59 0.88 0.81 0.91 0.91 0.88 0.88

H.S 274 0.79 0.90 0.89 0.90 0.89 0.90 0.89

aPredicting methods are Majority Vote (M.V.), the Frequency-based method (F.),

the Enhanced Frequency-based method (E.F.), the Triple method (T.), the Line-

Triangle method (L-T), the Enhanced Triple method (E.T.) and the Enhanced

Line-Triangle method (E L-T).
bThe protein structure is predicted the class with the highest probability.
cA function prediction is counted as correct if one of the best three predicted

categories is correct.

Underline: where the result outperforms M.V. with statistical significance.

Bold: where E.F. outperforms E.L-T with statistical significance.

Italic: where E.L-T outperforms E.F. with statistical significance.
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3.2 Integration of structure, function and subcellular

location

To date, only for yeast is sufficiently reliable information on

structure, function and subcellular location available to

warrant including for prediction. These three protein char-

acteristics are analysed separately, pairwise and all combined,

to see how additional information aids prediction. In total,

7 structure classes (SCOP), 24 functional groups and 13

subcellular locations are used. Among 4554 proteins,

the coverage of annotated proteins are 69, 57 and 86% in

structure, function and locations, respectively. The number

of proteins having at least two interacting partners with one,

two or three annotations are shown in the Venn diagram

(Fig. 2).

We start by predicting one characteristic without adding

additional information using the Frequency-based method.

Then the information from another characteristic is added and

the Enhanced Frequency-based method is used. Finally, the

information from all three characteristics is included in the

model.
Figure 3 shows the result for function prediction. Including

both structure and function information significantly improves

the predictions compared to only including structure or

function information, see Supplementary Material Table F1.

Equally, adding location information compared to only

including structure or function information significantly

improves the prediction. However, once both structure and

function are included in the model, it is only for function

prediction that including location information still improves

the prediction. It appears that only limited additional informa-

tion can be extracted from the third characteristic. We,

therefore, expect our enhanced methods to have similar

performance on those organisms without location information.

3.3 Inclusion of partially annotated interacting proteins

The enhanced methods improve the accuracy by integrating

multiple characteristics. They also require information from

fully annotated neighbours, which may reduce the number of

predictions. As described earlier in Section 2.8, our score can be

extended to absorb information from partially annotated

neighbours and to predict totally unknown proteins. Here, we

compare the number of predictions (structure and function)

given by different methods. The prediction on the six organisms

in Table 1 are pooled and the accuracies are calculated for each

method.
Figure 4 shows the results from structure and function

prediction. The extended Enhanced Frequency-based

method allows far greater coverage for both structure and

function predictions with only a small decrease in accuracy.

The inclusion of partially annotated proteins considerably

improves the coverage of the model.

3.4 Prior data base from pooled protein–protein

interactions

When predicting an unknown protein, the frequencies of pairs,

lines and triangles suggest how often they are observed in a cell

and provide biological information of which categories might

interact. They are the basis of the probability score. These

frequencies can be obtained by using pooled interactions from

multiple organisms as a prior data base. Using a larger prior

data base created from multiple species may help in the

prediction of a less studied organism, both in specificity and in

sensitivity. Here we group protein interactions into prokar-

yotes, including E.coli and H.pylori, and eukaryotes, including

C.elegans, S.cerevisiae, D.melanogaster, M.musculus and

Structure : 2456 annotated Function:
2046 annotated

Subcellular location : 3237 annotated

1510

111
30

395

624

708

127

Fig. 2. Venn diagram of annotated proteins. The Venn diagram shows

the number of proteins having at least two interacting partners with one

or multiple annotations for structure, function and subcellular location.
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H.sapiens, and a final global pooled dataset including all

interactions. We once again predict the structure (7 SCOP

classes) and function (24 functional groups) of DIP subsets

using the Enhanced Frequency-based method.
In the prediction of structure as shown in Figure 5, when we

predict eukaryotes with sparsely clustered protein interactions

networks, such as D.melanogaster, C.elegans, and S.cerevisiae,

using a prior data base from eukaryotes only, we gain a higher

accuracy. On the other hand, the use of pooled interactions

does not significantly improve predictions for M.musculus,

H.sapiens, H.pylori and E.coli (the three highly clustered

protein–protein interaction networks with many interactions).

For function prediction, see Supplementary Material

Figure G2., for D.melanogaster, S.cerevisiae and H.sapiens,

the predictions significantly deteriorate when using prokaryotes

as prior data. These results indicate that the quality of the

prior data base may be more important than the quantity

of data.

4 CONCLUSION

We begin our conclusion with two caveats. First, incomplete

and biased data in protein interactions make their use in

prediction challenging (Deane et al., 2002). Second, our scoring

method is based on the heuristic assumption that the likelihood

for a specific category to be observed in the query protein is

roughly proportional to the product of the relative frequencies

of observing this category in all pairs or triples around the

neighbours of a query protein, see Equation (2). Our multi-

plicative scheme has a tendency of to give a high score in the

most likely category while the other categories share only a

small proportion of the score. Two other scoring schemes,

namely the summation and the maximum, were also tested; the

multiplicative scheme gave the best results. Our probability

score functions can be related to models proposed in social

network analysis (Wasserman and Pattison. 1996) and can

indeed be viewed as pseudo-likelihoods evaluated at their

maximum-likelihood estimates, see e.g. (Cox, 2006); consis-

tency is an issue if the dependence in the data is strong.

Our methods based on network structure show substantial

improvement in the prediction of protein characteristics and

offer an alternative to sequence-based approaches. Our

Enhanced Frequency-based method is never outperformed by

Majority Vote, but in contrast significantly improves over

Majority Vote in a number of organisms.

It has been previously suggested that it is important to

integrate biological information for the prediction of protein

characteristics. Our Enhanced methods demonstrate the

increased precision which using additional information in the

enhanced model can give. The accuracies for function predic-

tion range between 61 and 71% dependent on the amount of

additional information. Moreover, the Enhanced methods can

be extended to make use of the information from partially

annotated proteins. The number of predictions is increased

while the accuracy is still higher than Majority Vote.

The results from predicting proteins without homologues

show that our methods are able to predict proteins that are not

predictable by sequence-based procedures. Our methods can

serve as an alternative approach for protein characteristic

annotation.

A comparison shows that the Enhanced Triple methods show

no marked improvement over the considerably simpler

Enhanced Frequency-based method. This phenomenon is in

contrast to the tendency towards transitivity in the networks,

and warrants further observation. Our explanation is that to

date the data in the triangle structures contains too much noise

to be of much predictive power.
The results when using prior data bases of pooled interac-

tions from other organisms show that the choice of prior data

base is important. A prior data base pooling a large number of

interactions can improve the prediction for a poorly studied

organism, such as D.melanogaster (achieving a higher accuracy

and a large number of predictions). But in predicting a

eukaryotic organism, the prior data base built only from

eukaryotes tends to give more accurate predictions than one

from prokaryotes and vice versa. This suggests that there might

be a network similarity within kingdoms and that the

interaction networks in prokaryotes and eukaryotes may be
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Fig. 5. Structure prediction using pooled interactions as prior data

base.
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different. Therefore, it may be more helpful to carefully
construct prior data bases from a few well understood
organisms from each kingdom rather than to accumulate far
more data with low reliability.

Finally, we note that the accuracy of predictions tends to
increase with the clustering coefficient. As more physical
interactions are experimentally detected, it is anticipated that

protein–protein interaction networks will become more com-
pact and therefore our methods will become more accurate.

ACKNOWLEDGEMENTS

We would like to thank the associate editor and the referees for
their helpful comments and criticisms. Funded in part by
MMCOMNET Grant No. FP6-2003-BEST-Path-012999.
Funding to pay the Open Access publication charges for this

article was provided by Department of Statistics, Oxford
University.

Conflict of Interest: none declared.

REFERENCES

Aloy,P. and Russell,R.B. (2003) Interprets: protein interaction prediction through

tertiary structure. Bioinformatics, 19, 161–162.

Aloy,P. et al. (2004) Structure-based assembly of protein complexes in yeast.

Science, 303, 2026–2029.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

Nat. Genet., 25, 25–29.

Barabasi,A.L. and Oltvai,Z.N. (2004) Network biology: understanding the cell’s

functional organization. Nat. Rev. Genet., 5, 101–113.

Burley,S.K. et al. (1999) Structural genomics: beyond the human genome project.

Nat. Genet., 23, 151–157.

Chen,P. (2005) A bayesian approach to predicting protein–protein interactions..

Transfer report. Oxford University.

Chou,K.C. (2000) Prediction of protein structural classes and subcellular

locations. Curr. Protein Pept. Sci., 1, 171–208.

Cox,D. (2006) Principles of Statistical Inference, Cambridge University Press,

Cambridge. Section 7.6.6.

Deane,C.M. et al. (2002) Protein interactions: two methods for assessment of the

reliability of high throughput observations. Mol. Cell Proteomics, 1,

349–356,1535–9476.

Dorogovtsev,S.N. and Mendes,J.F.F. (2003) Evolution of Networks : from

Biological Nets to the Internet and WWW. Oxford University Press, Oxford.

Gavin,A.C. et al. (2002) Functional organization of the yeast proteome by

systematic analysis of protein complexes. Nature, 415, 141–147.

Gough,J. and Chothia,C. (2002) Superfamily: Hmms representing all proteins of

known structure. scop sequence searches, alignments and genome assign-

ments. Nucleic Acids Res., 30, 268–272.

Iliopoulos,I. et al. (2001) Genome sequences and great expectations. Genome Biol.

2, interactions0001.1-0001.3.

Liu,Y. et al. (2005) Inferring protein–protein interactions through high-

throughput interaction data from diverse organisms. Bioinformatics, 21,

3279–3285.

Mewes,H.W. et al. (2002) Mips: a database for genomes and protein sequences.

Nucleic Acids Res., 30, 31–34.

Murzin,A.G. et al. (1995) Scop: a structural classification of proteins database for

the investigation of sequences and structures. J. Mol. Biol., 247, 536–540.

Nabieva,E. et al. (2005) Whole-proteome prediction of protein function via

graph-theoretic analysis of interaction maps. Bioinformatics, 21, I302–I310.

Schwikowski,B. et al. (2000) A network of protein–protein interactions in yeast.

Nat. Biotechnol., 18, 1257–1261.

Sharan,R. et al. (2005) Conserved patterns of protein interaction in multiple

species. Proc. Natl Acad. Sci. USA, 102, 1974–1979.

Spirin,V. and Mirny,L.A. (2003) Protein complexes and functional modules in

molecular networks. Proc. Natl Acad. Sci. USA, 100, 12123–12128.

Uetz,P. et al. (2000) A comprehensive analysis of protein–protein interactions in

saccharomyces cerevisiae. Nature, 403, 623–627.

Wasserman,S. and Pattison,P. (1996) Logit models and logistic regressions for

social networks .1. an introduction to markov graphs and p. Psychometrika,

61, 401–425.

Zhang,Y. and Skolnick,J. (2005) The protein structure prediction problem could

be solved using the current pdb library. Proc. Nat. Acad. Sci. USA, 102,

1029–1034.

A statistical approach

2321


